Лабораторная работа							
«Исследование линейных электрических цепей синусоидального тока (резонанс токов)»							
Выполнил		МГТУ им.	Гр.				
Проверил		Н.Э.Баумана	Стенд №				

2. ЗАДАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

2.1. Изучите описание лабораторного стенда (методические указания «Стенд и приборы для исследования электрических цепей»)

2.2. Исследование линейной электрической цепи при параллельном соединении катушки индуктивности L и конденсатора C (резонанс токов)

- В лабораторной работе используются следующие мини блоки (таблица 1):
- катушки индуктивности 33 мГн и 100 мГн (номинальный ток 50 мА);
- конденсаторы 0,22 мкФ, 0,47 мкФ и 1,0 мкФ (номинальное напряжение 63 В).

	Гаолица Г				
N CTAUDA	L_K	С			
п стенда	мГн	мкΦ			
1 или 11	33	0,22			
2 или 12	33	0,47			
3 или 13	33	1,0			
4 или 14	100	0,22			
5 или 15	100	0,47			
6 или 16	100	1,0			
7 или 17	33	0,22			
8 или 18	33	0,47			
9 или 19	100	0,22			
10 или 20	100	0,47			

2.2.1. Соберите схему на наборном поле

Электрическая схема цепи приведена на рис. 7. Она содержит генератор синусоидального напряжения \dot{U} , катушку индуктивности и конденсатор. Индуктивность катушки L_K и емкость конденсатора C выбираются по номеру стенда. Катушка имеет активное сопротивление R_K , а конденсатор – сопротивление утечки R_C . Эти параметры определяются при проведении эксперимента.

В схему включен виртуальный вольтметр V0, измеряющий выходное напряжение генератора. Виртуальный амперметр A1 включается поочередно в различные ветви схемы, позволяя измерять общий ток I, ток катушки I_K и ток конденсатора I_C .

Рис. 7. Электрическая схема.

Для монтажа исследуемой схемы на наборном поле (рис. 8), рекомендуется на первом этапе смонтировать только мини блоки и жесткие перемычки, а затем гибкими перемычками провести остальные соединения.

Рис. 8. Монтажная схема.

2.2.2. Активация виртуальных измерительных приборов Включите питание стенда и компьютера.

Активируйте левой кнопкой мыши иконку «ВП ТОЭ» на рабочем столе компьютера. В открывшейся вкладке **Приборы I**, рис. 9 а, установите приборы V0 и A1 для измерения действующего значения. Нажмите указателем мыши на вкладку Меню, и в раскрывшемся списке, рис. 9 б, последовательно активируйте **Приборы II**, **Осциллограф** и **Аналоговый прибор**, рис. 10.

Измените (рис. 10) вкладку Активное сопротивление **R** (Приборы II) на Угол сдвига фаз. Измените номер входа Аналогового прибора с 1 на 7. Виртуальные приборы готовы для измерения напряжений, тока и угла сдвига фаз и активной мощности.

2.2.3. Измерение частоты резонанса

Установите по вольтметру V0 напряжение генератора синусоидального сигнала $U\,{=}\,8\,{\rm B}.$

Изменяя частоту генератора, добейтесь резонанса токов. Резонанс достигается на частоте f_0 при минимальном токе I_0 (показания виртуального амперметра A1) и минимальном (близком к нулю) сдвиге фаз φ между входным напряжением и током (контролируется стрелочным виртуальным прибором). Занесите показания в таблицу 2.

Рис. 10. Набор виртуальных приборов.

Таблица 2

Стенд № <i>U</i> = 8 В			=8B	$L_K = \dots$				С=			
Измерено								Вычислено			
f_0 ,	$I_0,$	φ,	I_K ,	φ_K ,	P_K ,	I_C ,	φ_C ,	P_C ,	R_K ,	R_C ,	$f_{0\mathrm{pacy}}$,
Γц	мА	град	мА	град	мВт	мА	град	мВт	Ом	Ом	Гц

Перенесите штекер кабеля измерения тока на мини блок амперметра катушки индуктивности. Измерьте по виртуальным приборам ток катушки I_K , сдвиг фаз между током и напряжением катушки φ_K и активную мощность катушки P_K . Занесите показания в таблицу 2.

Перенесите штекер кабеля измерения тока на мини блок амперметра конденсатора. Измерьте по виртуальным приборам ток конденсатора I_C , сдвиг фаз между током и напряжением конденсатора φ_C и активную мощность конденсатора P_C . Занесите показания в таблицу 2.

По результатам эксперимента вычислите активное сопротивление катушки $R_K = \frac{P_K}{I_K^2}$; (P_K в ваттах). Активное сопротивление утечки конденсатора $R_C = \frac{U^2}{P_C}$; (P_C в

ваттах). Резонансную частоту $f_{0 \text{ расч}} = \frac{1}{2\pi} \sqrt{\frac{1}{L_K C} - \frac{R_K^2}{L_K^2}}$; (L_K в генри, C – в фарадах).

Объясните, почему для расчетов используются именно такие формулы.

Сравните расчетные данные с экспериментальными.

Постройте векторную диаграмму токов. На диаграмме с соблюдением масштаба отобразить взаимное расположение вектора входного напряжения \dot{U} и векторов токов $\dot{I}_0, \dot{I}_K, \dot{I}_C$. При построении используйте заготовку, рис. 11.

2.2.4. Частотные характеристики параллельного резонансного контура

2.2.4.1. Изменяя частоту в меньшую сторону, добейтесь увеличения тока до

уровня $I_0\sqrt{2}$. Запишите полученную частоту f_1 и ток в столбец f_1 таблицы 3.

2.2.4.2. Изменяя частоту в большую от f_0 сторону, добейтесь увеличения тока

до уровня $I_0\sqrt{2}$. Запишите полученную частоту f_2 и ток в столбец f_2 таблицы 3.

2.2.4.3. Вычислите шаг Δ_1 изменения частоты для частот меньших резонансной частоты f_0 , и шаг Δ_2 для частот больших резонансной частоты. Занесите вычисленные значения в первую строку таблицы 3.

2.2.4.4. Проведите необходимые измерения для остальных рекомендуемых частот.

2.2.4.5. Вычислите для всех частот отношение текущего тока к резонансному $\frac{I}{I_0}$

и занесите полученные значения в таблицу 3. 2.2.4.6. Вычислите ширину полосы пропускания $\Delta f = f_2 - f_1$ и занесите

результат в таблицу 3.

2.2.4.7. Постройте график $\frac{I}{I_0}$ в функции частоты. Заготовка графика на рис. 12.

Примечание. При необходимости измените разметку оси частот.

Рис. 11. Заготовка для построения векторной диаграммы токов при резонансе.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Почему в параллельной L-C цепи изменение емкости конденсатора приводит к изменению значения тока I, коэффициента мощности $\cos \varphi$, активной P и полной S мощностей?

2. Как добиться резонанса при параллельном соединении *L-С* элементов, и по каким признакам убедиться, что в цепи наступил резонанс?

3. В параллельной *L-С* цепи установлен режим резонанса токов. Сохранится ли резонанс, если:

а) параллельно конденсатору подключить активное сопротивление;

б) последовательно с катушкой подключить дополнительное активное сопротивление;

в) последовательно с конденсатором включить активное сопротивление?

4. В параллельной *L*-*C* установлен режим резонанса токов. Как изменится активная мощность, если параллельно зажимам источника подключить активное сопротивление, конденсатор?

5. Как примерно изменятся графики, рис. 12, если уменьшить сопротивление R_K ?

6. Объясните, как качественно изменится векторная диаграмма токов, построенная при резонансе увеличить частоту питающего напряжения?

7. Объясните, как качественно изменится векторная диаграмма токов, построенная при резонансе, если увеличить емкость *С*?

8. Что такое добротность резонансного контура? Объясните, как найти добротность по экспериментальным данным и по графикам.

9. Объясните, почему при резонансе токов, ток принимает минимальное значение?

Таблица 3.

		$\Delta_1 =$	$(f_0 - f_1)/3$	= Гц	$\Delta_2 = (f_2 - f_0)/3 = \Gamma_{II}$			$\Delta f = f_2 - f_1 = \Gamma_{II}$			
f,Гц	$f_1 - 2\Delta_1$	$f_1 - \Delta_1$	f_1	$f_0 - 2\Delta_1$	$f_0 - \Delta_1$	f_0	$f_0 + \Delta_2$	$f_0 + 2\Delta_2$	f_2	$f_2 + \Delta_2$	$f_2 + 2\Delta_2$
I,A			$I_0\sqrt{2} =$			$I_0 =$			$I_0\sqrt{2} =$		
$\frac{I}{I_0}$						1					

Рис. 12. Заготовка для построения частотной характеристики параллельного резонансного контура.